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Abstract

More than two-thirds of breast cancers occur in post-menopausal women, and depend on the estrogens for their proliferation and survival.
For the treatment of estrogen-dependent breast cancers, two major treatment options are now available. One is selective estrogen receptor
modulator (SERM) such as Tamoxifen and another is aromatase inhibitor such as Anastrozole, Letrozole and Exemestane, which reduce
local in situ formation of estrogens. Although these therapies are clinically active for advanced and early breast cancers, de novo and/or
acquired resistance to SERM and/or aromatase inhibitors are also clinical problem. Recent studies suggest that local formation of estrogens
in the breast tumors is more important than circulating estrogen in plasma for the growth and survival of estrogen-dependent breast
cancer in post-menopausal women. The rationale for the importance of local formation of estrogens is based on the following evidences.
Estradiol (E2) levels in breast tumors are equivalent to those of pre-menopausal patients, although plasma E2 levels are 50-fold lower
after menopause. E2 concentrations in breast tumors of post-menopausal women are 10–40 times higher than serum level. Biosynthesis of
estrogens in breast tumors tissues occurs via two major different routes, one is aromatase pathway and another is steroid-sulfatase (STS)
pathway. Whereas many studies has been reported about aromatase inhibitor and its clinical trial results in breast cancer patients, limited
information are available regarding to other estrogen regulating enzymes including STS, its role in breast tumors and STS inhibitors. STS
is the enzyme that hydrolyses estrone 3-sulfate (E1S) and dehydroepiandrosterone-sulfate (DHEA-S) to their active un-sulfoconjugated
forms, thereby stimulating the growth and survival of estrogen-dependent breast tumors. It has been well known that E1S level are much
higher than E2 level both in plasma and tumor of post-menopausal patients. Recent reports show that more than 80% of breast tumors are
stained with anti-STS antibody and the expression of STS is an independent prognostic factor in breast cancer. Taking these findings into
consideration, local formation of estrogens could be partially synthesized from large amount of E1S by STS, which exist in breast cancer.
On the other hand, aromatase localizes in stroma and adipocyte surrounding breast cancer. Furthermore, since estrogen formation from
E1S and DHEA-S (STS pathway) cannot be blocked by aromatase inhibitors, STS is thought to be a new molecular target for the treatment
of estrogen-dependent tumor post-SERM and/or aromatase inhibitors. In this symposium, these recent rationale for the importance of STS
in post-menopausal breast cancer patients is reviewed as well as STS inhibitor.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Estrogen-sensitive breast cancer cells are stimulated to
proliferate by active estrogens synthesized in the ovary
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and/or in peripheral or breast tissues[1–3]. Enzymes in-
volved in estrogen synthesis, therefore, should be excellent
targets for therapeutic intervention for the treatment of
breast cancer and other estrogen-dependent cancers. Es-
trogen levels in breast cancer tissues of post-menopausal
women are 10–40 times higher than in plasma (serum)
levels from the same individuals[4–7]. Furthermore, es-
trogen levels in breast tissue of post-menopausal women
are nearly equivalent to those in pre-menopausal women
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Fig. 1. Synthesis route of estrogens and androgens. These steroidal compounds originated from cholesterol. The working points of aromatase and STS
are shown. 17� HSD: 17� hydroxysteroiddehydrogenase, DHEA(S): dehydroepiandrosterone (sulfate), Adiol(S): androstenediol (sulfate) EST: estrone
sulfotransferase.

[8,9]. The higher levels of estrogens in breast cancer tissues
are thought to be due to local formation of estrogens via
two different routes, namely, the aromatase pathway (from
androstenedione (ADIONE)) or sulfatase pathway (from
estrone 3-sulfate (E1S)) [10–12] (Fig. 1).

Recently, inhibitors of aromatase have been shown to
be more effective against recurrent and progressive breast
cancer patients than the anti-estrogen drug, Tamoxifen[13],
suggesting that the inhibition of estrogen synthesis is clini-
cally very important for the treatment of estrogen-dependent
breast cancer. Recent evidences suggested that steroid sul-
fatase (steryl sulfatase, EC 3.6.1.2 (STS)) could also be an
important target for hormonal therapy of breast cancer in ad-
dition to aromatase inhibitors. Firstly, the expression level of
STS has been observed in tumor tissue but not in surrounding
normal tissue[14]. Secondly, the activity of STS in breast
cancer tissue was shown to be at least 100 times higher than
that of aromatase[15–17]. Thirdly, andro-5-ene-3�,17�-diol
(Adiol), which is also the active estrogen, is derived from
dehydroepiandrosterone-sulfate (DHEA-S) in a pathway
involving sulfatase pathway that is independent of the
aromatase pathway[18–20]. Fourthly, E1S should be a
reservoir for formation of active estrogens in breast cancer
tissue, because E1S has a higher tissue concentration and
longer half-life [6,21]. Finally, recent clinical studies re-
vealed that STS mRNA expression could be an independent
predictor of recurrence in breast cancer patients[22]. These
results suggested that inhibitors of STS might be effective
against recurrent and progressive estrogen-dependent breast
cancer or may provide an addition to aromatase inhibitors
for complete estrogen blockade therapy.

Over the past several years, we and other researchers
have reported on the efficacy of steroidal[23–26]and non-
steroidal inhibitors [27–29] of STS. We have focused
upon cell-free enzyme inhibitory activity as well as anti-
proliferative activity or estrogenic activity in cultured breast
cancer cells. Only few reports have previously addressed in
vivo anti-cancer activity or estrogenic activity of these STS
inhibitors [30].

In this report, we describe the anti-cancer activity of the
non-steroidal STS inhibitor compound 9 ((p-O-sulfamoyl)-
N-tetradecanoyl tyramine), which lacks estrogenic activ-
ity in vitro. This STS inhibitor suppressed E1S-dependent
growth in nude mice of MCF-7 cells, which over-expresses
STS. Our results suggest that our STS inhibitors may have
a potential as a therapeutic agent for estrogen-dependent
breast cancer.

2. Methods

2.1. Chemicals

Compound 9 (Fig. 2) was synthesized by published
methods[17]. Tris, E1S, Tamoxifen, dimethyl sulfoxide
(DMSO), and NP-40 were obtained from Sigma (St. Louis,
MA). Ovahormon DepotTM (containing estradiol (E2)
dipropionate 5 mg/ml) was obtained from Teikoku Zoki
Seiyaku (Tokyo, Japan). Calf serum (CS) was obtained
from Hy-clone (Logan, UT, USA). Dextran coated charcoal
(DCC) treated CS was prepared as previously described
[31]. Phenol red (PR) free modified Eagle medium (MEM)
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Fig. 2. Hormone dependent growth of human breast cancer MCF-7 which over-express human steroid sulfatase (STS) induced cell line MCS-2 and vector
control MC-2 cells. Transfected cells were pre-cultured with estrogen free medium for 5 days and re-seeded with the same medium. The next day of
re-seeding, estrogens were added and the cell number was counted at 6 days later.

was obtained from Nissui Seiyaku (Tokyo, Japan). Base-
ment Matri-GelTM was obtained from Becton Dickinson
Labware (Bedford, MA, USA).

2.2. Animals

Six-week-old female nude mice were obtained from Clea,
Japan (Tokyo, Japan). All animals were kept in the condition
of 23◦C and 55% humidity, lighted every 12 h, and filtered
water and feed chow were freely given. All animal studies
were carried out under the authorized conditions guided by
Animal Moral Committee of the Pharmaceutical Research
Institute of Kyowa Hakko Kogyo Co. Ltd.

2.3. Cell culture

The MCS-2 cell line was established by introduction of
the human STS gene into estrogen-dependent human breast
cancer MCF-7 cells (unpublished data). MCS-2 cells were
cultured with 5% DCC-CS/PR-free MEM for 5 days as an
estrogen depletion condition. After starvation of estrogen,
the cells were re-seeded with the same medium in 24-well

plate at 5000 cells per well/0.5 ml. STS inhibitors and E1S
(10 nmol/l) were added 24 h later and the cell numbers were
counted 144 h later.

2.4. Effects of STS inhibitor on E1S-stimulatd MCF-7 cells
which over-express STS (MCS-2 cells) in nude mice

MCS-2 cells were cultured with 5% DCC-CS/phenol red
(PR)-free MEM/10 nmol/l E1S and were transplanted into
nude mice at 1×10−7 cells per mouse with an equal volume
of Matri-GelTM (0.1 ml per mouse), and on the same day,
Ovahormon DepotTM were injected into the thigh muscle.
Two weeks after transplantation, tumor sizes were measured,
and E1S (0.1 mg/kg per day) were administrated subcuta-
neously at another side of tumor. After daily E1S injec-
tion for 7 days, growth stimulated tumors were chosen and
these tumor bearing mice were divided into four groups.
One group received E1S (0.1 mg/kg per day, s.c.) daily and
the other group was treated with E1S (0.1 mg/kg per day,
s.c.) and the STS inhibitor for 18 days. Tumor volume was
calculated from measured diameters as previously described
[32].
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3. Results

As shown inFig. 2, MCF-7 cells which over-express the
STS enzyme (MCS-2 cells) proliferated in the presence of
low physiological concentrations (10 nmol/l) of E1S. Hun-
dred times higher concentrations of E1S (1000 nmol/l) are
needed to support the growth of vector control cells (MC-2
cells). With these data in mind, we utilized these MCS-2
cells for further validation of our STS inhibitors in vitro and
in vivo.

Compound 9, a non-steroidal STS (Fig. 3) inhibitor
which has an IC50 value of 56 nmol/l against the hu-
man STS enzyme in a cell-free system (data not shown),
inhibited E1S-stimulated growth of MCS-2 cells in a
concentration-dependent manner, with a GI50 value of
25 nmol/l. Importantly, compound 9 did not affect E1 or
E2-stimulated growth of MCS-2 cells (Fig. 4), suggesting

Un-treatment

E1S 0.1 mg/kg s.c.

E1S+comp.9
25 mg/kg p.o.

R
el

at
iv

e 
tu

m
or

 g
ro

w
th

 r
at

e
(r

at
io

 t
o 

in
it

ia
l t

um
or

 v
ol

um
e)

0

0.5

1

1.5

0 6 9 13 17 20 23 26 29
Days after administration

E1S + inhibitor

Fig. 5. Anti-tumor activity of STS inhibitors against STS over-expressed human breast cancer MCS-2 cells transplanted in female nude mice. MCS-2
cells were injected into nude mice with Matri-GelTM and were selected for the E1S dependency (seeSection 2). Mice with E1S dependent tumors were
divided into sub-groups. STS inhibitors were administrated for 18 days.
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Fig. 4. Growth inhibitory effects of compound 9 against human breast
cancer MCF-7 which over-express human STS, MCS-2 cell. MCS-2 cells
were pre-cultured with estrogen free medium for 5 days and after that,
re-seeded with the same medium. The next day of re-seeding, compound
9 and estrogens were added and 6 days later, cell numbers were counted.
Cell numbers of added estrogen alone were as the controls.

that the compound acts on the pathway involved in the for-
mation E1 or E2 from E1S rather than blocking downstream
events such as the inhibition of 17�-HSD or estrogen re-
ceptor. Compound 9 (at 1000 nmol/l) did not stimulate the
growth of MCS-2 cells in the absence of estrogen, suggest-
ing that this compound lacks the estrogenic activity (data
not shown).

To examine if compound 9 would show growth inhibitory
activity on E1S-stimulated growth of MCS-2 cells in vivo,
1 × 107 of MCS-2 cells were transplanted into the flank of
female nude mice with Matri-GelTM. After transplantation,
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mice were injected with Ovahormon DepotTM to establish
tumor growth, and then were treated with E1S at 0.1 mg/kg
per day subcutaneously. The mice with tumors that grew in
the presence of E1S were selected for further therapeutic
experiments (Fig. 5). In the absence of E1S, tumor size
decreased by 75% after 18 days, however, 18 consecutive
daily administrations of E1S at 0.1 mg/kg per day stimu-
lated the growth of tumor 1.2-fold on that day. In addition,
18 consecutive daily oral administrations of compound 9
(10 mg/kg) blocked the E1S-stimulated tumor growth of
MCS-2 cells (Fig. 5). These results suggested that the STS
inhibitor; compound 9 could inhibit the conversion of E1S
to E1 in tumor or other tissue(s) in animal body.

4. Discussion

Estrogen-dependent breast cancers are prevalent in
post-menopausal women, despite low circulating estrogen
levels, suggesting that the breast tumors are themselves
producing estrogens from circulating precursors[33,34].
Estrogens may be formed in breast tumors by two pathways,
namely the aromatase pathway and sulfatase pathway. To
date a lot of steroidal or non-steroidal STS inhibitors have
been reported[23–29], however, at least to our knowledge,
few report actually revealed in vitro and in vivo growth
inhibitory activity of the inhibitors using the same cell line.

To simulate the post-menopausal breast cancer patient,
we transfected the estrogen-dependent MCF-7 cells with
the human STS gene to provide a source of non-ovarian
estrogen in cell culture or nude mice. Using this STS
over-producing cells, named MCS-2, which can grow in the
presence of physiological concentration range of E1S as low
as 10 nmol/l, we revealed that our non-steroidal (compound
9) STS inhibitors could inhibit E1S-stimulated growth of
the cells giving GI50 value of 27 nmol/l (compound 9, data
not shown). The inhibitory activity of this STS inhibitor
is proved to be selective to STS pathway because GI50
value was significantly increased when higher concentra-
tions of E1S was used (Fig. 4), and this inhibitor did not
inhibit E1 or E2-stimulated growth of the cells in vivo.
Additionally, we also revealed that our non-steroidal STS
inhibitor could inhibit E1S-stimulated growth of MCS-2
cells in female nude mice model in vivo for the first time
(Fig. 5).

Adiol, originated from DHEA, can be metabolized into
testosterone by several steps and then into estradiol by
aromatase, respectively (Fig. 1). In our data, Adiol can
stimulate the cell proliferation of MCS-2 cell at concen-
trations of nanomoler range (i.e. 1–10 nmol/l). In contrast,
testosterone cannot stimulate at the same concentrations and
higher concentrations (i.e. 1–10�mol/l) are required for the
stimulation, presumably due to lower activity in aromatase.
These data suggest that estradiol, which is originated from
a physiological concentration of Adiol, hardly stimulate the
proliferation of MCS-2 cells.

In summary, our present results strongly suggested that
these STS inhibitors should be potent therapeutic agents for
treatment of estrogen-dependent breast cancers and other
hormone-dependent tumors.
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